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A class of Pad’finite volume methods providing an improved spectral reso-
lution is presented and compared with well-known methods. The formulation is
based on the sliding averages of the variables and allows the computation of deriva-
tives of all orders. Using the Fourier analysis, these methods are examined with
respect to (i) order of accuracy, (ii) spectral resolution, (iii) boundary conditions, and
(iv) stability.  © 1999 Academic Press
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1. INTRODUCTION

The development and widespread use of high-speed digital computers rendered nun
simulations of fluid flow problems a common practice in industry (see, for example, [7, 1
In the 1990s, numerical simulation has also evolved into a tool for the fundamental stu
turbulence, either by direct numerical simulation or by large eddy simulation. A comr
feature in both applied and fundamental developments is the pursuit of highly acc
methods. The latter provides grid-independent results in coarser grids and sometime
be the only way to find a satisfactory solution in a “sensible” grid.

Direct numerical simulation of turbulence and large eddy simulation require solu
of time and length scales that are various orders of magnitude apart. This has |
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the development of spectral and pseudo-spectral methods for numerical integration of
Navier—Stokes equations (see, for example, [9, 15, 23]). However, these methods stro
depend on the grid topology and the type of boundary conditions. Moreover, they n
lose effectiveness in problems with sharp variations over thin shear or boundary lay
(see [2]).

Compact methods, introduced in the 1930s, can ensure spectral-like resolution of s
waves. The implementation of such methods is simple and is not restricted either by the
topology or to some types of boundary conditions. The seminal work of Lele [18], buildil
on previous work on compact finite differences, contributed greatly to the diffusion
these ideas. Spotz [26] proposed a class of compact finite difference schemes that
the governing equations to approximate the leading term in the truncation error. Th
schemes can also handle nonuniform grids and have been applied to the stream-fun
vorticity formulation of the Navier—Stokes equations, transient problems, and so for
Wilsonet al.[30] presented and analyzed high-order accurate compact methods for solv
unsteady incompressible Navier—Stokes equations for 2D and 3D fluid flow problems. S
methods use the primitive variables together with a Poisson equation for the pressur
[31], a 4th-order compact method for solving convection—diffusion problems was analy:
with respect to the effect of boundary closure and cell Peclet number. Cargtraker
[4, 5] presented an extensive and illuminating study of explicit and compact high-orc
schemes with various boundary conditions. Mahesh [21] introduced a class of comj
schemes that uses a coupled derivative formulation. It is shown that, for the same ord
accuracy, the resulting coupled method displays an improved spectral resolution and the
work required by the new method is comparable to that required by the standard com|
method.

Despite their differences these methods are all based on the finite difference appro
Mattiussi [22], using some concepts of the algebraic topology, concluded that for to
logical equations, that is, the differential or discrete form of the field equations, a discr
representation of the geometry, fields, and operators is preferable. This requires the co
attribution of physical quantities to geometrical objects with appropriate orientation a
dimension. Moreover, the fact that the finite-difference methods do not fulfill this attribu
renders finite volume and finite element methods more qualified for numerical simulat
of field problems. Indeed, finite volume methods are prefered by the computational fl
dynamics (CFD) practitioners in industry: they are as easy to implement as finite differe
methods and easier than the finite element method; they are based in the weak formul;
of the equations and so require less smoothness of the function; and last, but not I
they are conservative. This last property is essential for methods aiming at compres:
fluid flow problems (see [12]). Recently, Gaitonde and Shang [8] proposed and analy
a class of optimized 4th-order finite volume compact schemes using the reconstructior
the primitive function.

That said, the objective of the present work is to extend and analyze the class @iffrad”
volume methods proposed by Gaitonde and Shang. The formulation uses the sliding aver
of the variable as the basic variable and the reconstruction via deconvolution. The anal
includes (i) the study of the truncation error of the spatial interpolation with respect to
order of accuracy and its spectral resolution, (ii) the study of boundary conditions and tt
effects on the quality of the results and stability of the method, and (iii) the stability analy
of explicit and implicit time marching methods. Throughout the presentation comparisc
with commonly used methods are provided and discussed.
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2. THE STANDARD PADE INTERPOLATION

In this section we describe a class of th-order Pad finite volume methods. This class
is standard in the sense that it uses a symmetric stencil, and the resulting interpol
polynomial provides the maximal order of accuracy for the given stencil.

The method, which can be used as a general interpolating technique, is aimed at trar
equations. So, given the distinct characteristics of transport by convection and diffus
we analyze them in turn below.

2.1. Hyperbolic Equations

The linear advection equation

il

¢
c%? _
at  ox

=0, (1)

wherec is a real constant anglis a scalar function, is often used as a model for the descr
tion of numerical approximation of hyperbolic systems. This is because many hyperk
methods use the Jacobian matrix computed at a convenient point and interpolate i
characteristic directions. The result is a set of uncoupled linear hyperbolic equations,
of which are of the form of Eq. (1) (see [29]).

Let {oj}jez, With o; = [X}, Xj+1], Xj = jh, j € Z be a partition ofR, for some grid
parameteh € R. Given a functionf € L* andh e R its sliding, or moving, averagé_e Lt
is defined as (see [11])

_ 1 h/2
f = f/ f(X+y)dy
h J_n2

1
= HXh k f, (2)

wherex denotes the usual convolution of functions and

1 if|x <3,

X) =
xn () {O otherwise

is the characteristic function of a cell. We use the convention proposed by Silva [6] that ¢
over a variable denotes a dummy variable. In the finite volume approach we first intec
Eqg. (1) over each control volume, or cetl, of a partition{o;}; <z, yielding

B—ﬂ’ +c@=o, jeZ. (3)
j+1/2
Note that, so far, we have not introduced any approximation in the model. Also, Eq.
which is an evolution equation for the cell averagegpfequires less smoothness thai
Eq. (1). The variables involved in (3) suggest that in the finite volume method we store
derive the discrete equations for the cell averages. This is the approach used in the pi
work.

So, we need to obtain a relation between the values of the variables at cell faces ar
averaged values at the midpoint of each cell. For this purpose we use thinEadolation,
which is a solution of the following probledi:
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Given a smooth functiogne C*°, and natural numbers mm € N, find coefficientsjai =
1,....mandb,i =1,...,n, such that

m m n n
dating+o+ Y atng =Y birciiand+ Y biti1one +0o(h* ™),

=1 i=1 i=1 i—1
(4)
In this expressions: C — C, with s R, is the translation, or shift, operator,
(sf)y(x) = f(x—s), xeR

for all f € C. Hence, from (2) théP problem is actually a deconvolution agh?Mm+m—1),

Solution oflP can be easily obtained by fixing a poite R and expanding the function
¢ in a Taylor series around it. We illustrate the procedure for the 4th-order problem, wt
m=n=1. Expanding the functiop around a poinkg € R yields

LR LV R L S LY
a<¢0— heo + ?% — g% + 2—4% — m% )

/ h? 1 h? " h* 4 h® (5)
+¢o + a(¢o + heg + S %+ g% + 5% + 5% >
2 3 4 5
= b<¢0 - gd)é + %q%; - %q%/ + 1%0%‘” - 7h20¢35)>
2 3 4 5
+ b<¢o Ot D g :20%5’)) +o(h®),
where the subscript 0 denotes the value of the corresponding funckigrsata = ;11, b= %,
and the truncation error is(h®) = (h*/120¢® + o(h®). In Table | we summarize the
coefficients and the leading term of the truncation error for the 2nd-, 4th-, 6th-, 8th-, ¢
12th-order Pagl'methods, withm+ 1> n > m. Note that for each order of accuracy the
finite volume method requires less smoothness from the function than its finite differel
counterpart (see [18]).

In Table Il we list, for the 4th, 6th, 8th, and 12th order of accuracy, the coefficien
and the leading term of the truncation error for the finite volume Lagrange interpolati
scheme. The latter is obtained by takimg=0 in Eq. (4). As can be seen from this table,
with the exception of the 2nd-order problem, where the interpolation problem is the sai

TABLE |
Coefficients and Leading Term of the Truncation Error
for some Pads Methods

Order a, as b, b, bs Truncation error
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TABLE Il
Coefficients and Leading Term of the Truncation Error
for Some Lagrange Methods

Order b, b, bs b, bs bg Truncation error

7 _1 — — — — _h @

12 12 30

31 _2 1 — — _ L I0)

60 15 60 140

533 _ 139 29 L — _ L O

840 840 840 280 630

12 18107  _ 5653 443 _ do7 67 _ 1 _ 2 fay
27720 27720 6930 6930 27720 5544 12012

the constant in the leading term of the truncation error for theeRadfpolation is always
smaller than the corresponding one for the Lagrange interpolation. The order being the
this means that in a Log—Log graph of the interpolation error, the asymptotic curves
parallel, but the absolute value of the error is smaller for theeRaetpolation. Moreover,
as the order increases, so does the ratio between the constants in the Lagrange ared tf
methods. For the 12th-order method the constant in the Lagrange interpolation is alr
400 times larger than the corresponding one for theeRatetpolation.

The order of the truncation error provides the asymptotic rate of convergence of
interpolation toward the interpolated function. Still, it conveys no information about t
spectrum of the truncation error. The use of Fourier analysis to characterize the spectrt
the truncation error is thoroughly described in [29]. It is the classical technique for study
and comparing approximation methods. In the context oéfPaethods it was used, among
others, by Lele [18] and Mahesh [21] to study compact finite difference schemes.

Next, we use the Fourier analysis to study theéPfdite volume method. Lep € S,
whereS’ is the space of tempered distributionghich is the dual space to the space o
rapidly decreasing smooth functions, or Schwartz spdthen its Fourier transform exists
and we write

@ = F(¢)
where the operatafF: S’ — S’ is the Fourier transforfon S, that is,
FS§ -8
¢ = F()

with

(F(P).v) = (9. F ()

1 Recallthatthe space of usualtempered functipbglongsta’; thatis,A={f e C:Ipe & | f (X)| < p(X),
x e R} C &', wherell is the space of polynomials &. In fact, for all f € S’ we havef = DPg, for somepe N
andg € A. A distinguished class of distributions that are not functions in the usual sense, buSgredmprises
the delta of Dirac and its derivativé$’ € S’, ne N.

2If felP, 1<p<oothenfeS and(F(f),y¥) = fRX[K f(x)e Ky (&)dx dg, for all ¥ € S. In particular,
if f,7(f)el’ thenf(x) =+ fR F(f)(kek*dk, for almost allx € R, with respect to the Lebesgue measure
Also, for f € L2, we haveF(f) e L? but, in general, the integraf]R f (x)e"**dk does not converge. In other
words, we do not have an integral representation for the Fourier transfdrin(gee [25]).
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and
f(w>(k)=/e—ikxw(x>dx, KeR
R

forall ¢ € S. We call® the spectrum of. B
Giveng¢ € &’ we use the convolution in (2) to defiges S, and denote

d = F(p)

Now, from its definition and the convolution theorem (see [25, Theorem XV, p. 268]) f
the Fourier transform it follows that

e I

2 [kh
ﬁ m(?)dx (5)

Applying the Fourier transform to Eq. (4) and taking into account Eq. (5) yields
E=EO®,

whereE € &’ is the spectrum of the truncation error aide S’ is the relative spectral error

E ={1+2 Zajcos(jkh) 2sm( )Zbcos<<j—)kh> . (6

j=1

Giventhe factthat (§) = 1, the relative spectral error is the spectrum of the error associat
with the Dirac distribution. Figure 1 shows the relative spectral efdior the 4th-, 6th-,
8th-, and 12th-order Padand Lagrange finite volume methods as a function of the ce
wave numbek : 27k = kh. This figure shows that increasing the order of theePmethod
decreases its spectral error at all wave numbers in the range considered. This effe

1
= 0.8
P>
St
H 0.6 .
2 ()
Z 04 € b
k=
D
&o0.2 ¢
d
0
0.1 0.2 0.3 0.4 0.5

Cell wave number

FIG. 1. Plot of relative spectral error versus grid wave number for advection using tleenfettiod: (a) 4th
order, (b) 6th order, (c) 8th order, (d) 12th order; and the Lagrange method: (e) 4th order, (f) 6th order, (g)
order, (h) 12th order.
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more pronounced for wave numbers closer to half grid width. This figure also shows
while the truncation error of the Lagrange interpolation scheme is of the same order a
corresponding Padbne, its behaviour in the spectral error is worse for all wave numb
greater than zero (constant functions). This discrepancy increases with the wave nu
and the order of the method.

Inspection of Eq. (6) provides a heuristic argument to explain the improvement in
Pad interpolation relative to the Lagrange one. Any usual interpolation method has a
similar to the second one within brackets. This term tends to zeko-ad/2. However,
any Pa@ method of 4th order or higher implicitly uses a full interpolating stencil. Th
gives rise to the first term within brackets in Eq. (6), which is a truncated expansion of
spectrum of the variablg. Note that in Eq. (6) it appears only in the cosine componen
This results from the symmetry of the stencil, which makes Eq. (4) exact for all odd smc
functions.

Next, we analyze the nature of the error associated with the proposediRigalvolume
method with respect to both its amplitude and phase.

We start by writing the linear advection equation as

d_dj_i_ Th2d —Thed

.
at h 0, (@)

whereg € C(R; §’). Then, for each € R we apply the Fourier transform to (7), yielding

dd 2ic . [kh
Using Eq. (5) results in
dd . . —
— +ick® =0.
dt +ic 0

Solution of the previous equation provides the law of propagation
() = DK, teR, )

whered, = ®(0). This means that the evolution of the sliding average corresponds t
phase shift and no change in the amplitude. This is expected, as the solution of the |
advection problem corresponds to a shift in the profile and the averaging commutes
the shift.

On the other hand, the Paditerpolation gives rise to the following relation between th
spectra® and ®:

c1><1+22aj cos(th)) =20 by cos((j —%)Rh). (10)

=1 =1
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FIG. 2. Plot of phase speed versus grid wave number for advection using teenfttiod: (a) 2nd order,
(b) 4th order, (c) 6th order, (d) 8th order, (e) 12th order, (f) CD 6th order, (g) CD 8th order, (h) CD 12th ord
and the Lagrange method: (i) 4th order, (j) 6th order.

Substituting Eg. (10) into Eq. (8) and solving f5ryie|ds the same law of propagation as
for the exact profile with in the place oft, where

2

4 <kh> > j-1bj cos((j — 3) kh)

_ 4 keR. 11
=" 142%™ a cosjkh) € (11)

kh

Figure 2 displays the phase ratigc as a function of the grid wave numbkrfor the
2nd-, 4th-, 6th-, 8th-, and 12th-order Radterpolation method and the 4th-, and 6th-orde
Lagrange interpolation methods. This figure shows that, for small grid wave numbers,
methods perform well. As the grid wave number increases, all methods begin displayir
retardation error in the phase. It is evident that compared to the standard Lagrange met
the Pa@ method stay close to the exact phase velocity over a wider range of cell ws
numbers. In fact, the 4th-order Radiethod shows a better spectral resolution than th
6th-order Lagrange method. Again, this is a consequence of the implicit full stencil usec
the Pa@’interpolation.

To quantify the error in the phase speed Lele [18] and Mahesh [21] used the notion:
resolving efficiency and percentage error as a function of the number of points per w
(PPW). The latter is related to the cell wave number as follows: PPMk. These are
measures of the ability of each method to resolve a particular range of phase speed.
show that compact methods are more efficient than the standard Lagrange methods f
orders of accuracy.

Inthe presentwork, we use the accumulated relative spectral error for half wave resolu
(ARSE, ). It is a direct measure of the spectral error provided bylthgo, %])-norm of
the relative spectral error distribution. That is,

1/2 - -
ARSE, , = / IE, | (k) dk.
0

This measure is similar to the one used by Gaitonde and Shang [8]. However, they meas
the norm of the error in the phase velocity, whereas here we measure the error in
truncation error of the interpolation.
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TABLE Il
ARSE;,, for the Padé and Lagrange
Methods Shown in Fig. 1

Method Order ARSE,
Padk 4 5788 x 102
Padk 6 2897 x 1072
Pad 8 1109x 1072
Pad 12 2341x 10°3
Lagrange 4 H46x 101
Lagrange 6 n67x 101
Lagrange 8 DO1x 10
Lagrange 12 ®55x 102

The values of the ARSE, for the Pa@”and Lagrange methods shown in Fig. 1 ar
tabulated in Table IIl. This shows that increasing the order of accuracy of theerPgitiod
and Lagrange methods causes them to stay close to the exact solution over a progres
larger range of the spectrum. The values of ARSEor the Pa@” methods are always
smaller than the corresponding values for the Lagrange methods. Moreover, as the
increases, the value of AR$E drops faster for the Padnethod. For example, the ratio
of the value of the ARSE; for the 8th-order to the 12th-order Radiethod is 4.7. The
corresponding figure for the Lagrange method is 1.2.

If we apply the inverse of the Fourier transform to Eq. (9) we recover the analyti
solution of Eq. (1), that is,

P(t) = Terdo,

whereqb_o = qb_(O) is the initial profile. The reason for its simple form lies in the fact that a
“waves” compounding travel at the same speed

Now, the nonlinear relation betweerandk in Eq. (11) expresses the fact that with the
Pad¥ interpolation the waves travel at different speed, depending on the wave riurfiber
waves are close to the actual speed at small grid wave numbers and progressively slow
ask — % Accordingly, applying the inverse of the Fourier transform to law of propagatit
of the approximation Padyields an “averaging” of the various dispersed modes of
initial profile.

In [29] it is shown that these errors form packets which travel at the group veloc
also called energy velocity. The authors point out that certain spurious numerical solut
of the semidiscretizations are affected with a positive phase speed but a negative ¢
velocity. This may be relevant in simulations of turbulence, because then the small ec
may propagate in the opposite direction to the true solution.

Next, we compute the group velocity for several @amd Lagrange methods. We star
by recalling the definition of the group velocity.

d -

Figure 3 shows the group velocily as a function of the cell wave number for the 2nd-
4th-, 6th-, 8th-, and 12th-order Radliterpolation methods, and the 4th-, and 6th-ord
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FIG. 3. Plot of group velocity versus grid wave number for the @authod: (a) 2nd order, (b) 4th order,
(c) 6th order, (d) 8th order, (e) 12th order; and the Lagrange method: (f) 4th order, (g) 6th order.

Lagrange interpolation methods. The exact solution for a unitary phase spéedlisAs
can be seen from this figure, as the cell wave number increases the group velocity s
deviates from the exact solution. Indeed, all methods display a region with negative gr
velocity. The size of this region and the minimum valuédoflepend on the accuracy, and
also on the method. Hence, increasing the accuracy decreases the region and the mini
However, the main effect comes from the method. In fact, the 4th-order Patliod has

a smaller region with negative group velocity than the 6th-order Lagrange method. T
means that energy is transported with a better group velocity for therRatiiod. Moreover,
as the order of accuracy increases, the range of wave number with positive group velc
becomes wider, and the oscillations with typically @ropagate at a higher speed in the
negative direction.

In [29] the authors also used a wave analysis to study the propagation of the spur
oscillations. We show that the 4th-order Badéthod is equivalent to a three-point semi
discretization of the advection equation. Létdenote the Banach algebra of continuous
linear operators of !, that is,.4 = L(LY). Clearly, (t_n + m)/4 + id € A, for all he R.
Now, we prove that this operator has an inversglin

To see that it is one-to-one, l¢te L* be a function such that

<f‘“:rh +id>(1/f) —0.

Then applying the Fourier transform to this equation yields
1 R
(1 + > cos(kh)) v =0.

So, it is one-to-one. The proof that it is onto is analogous, and existence of the inve
follows from the open mapping theorem (see, for example, [17]).
Consider Eq. (7) fop € L. Then, using the 4th-order Padiethod we obtain

d(]; 3C [ T_hj2— Th)2 T_h+7Th . -1 —
at +4( h 2 +id (r_h/2+fh/2)(]§:0.
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X

FIG. 4. Plot of distributiont =0 (top),t = & (middle),t = 12 (bottom).

The operators in the second term of the LHS are all Toeplitz and so commute. Hence,

T_h+ Th 2. dq? T_h—Th\
(T + é'd> at +°<T)¢ =0,

as desired. In particular we see that the “oscillatory” part travels at the sp@edin
agreement with the group velociW(%) for the 4th-order Paglimethod shown in Fig. 3.

Figure 4 illustrates the effect of the discretization in the error propagation. The prob
involves the time evolution of a periodic square profile

1 if |Xo1 — 1/2| < 1/8,
$ox) = {O otherwise
wherexg; = x — [x], with [x] the integer part ok. The 4th-order accurate Radinite
volume method is used, with periodic boundary conditions, in a grid comprising 64 con
volumes. Time marching is implemented with the 4th-order Runge—Kutta (RK) meth
using a value O% = 0.1 for the CFL number. This level of CFL guarantees that the err
is predominantly due to spatial discretization. The numerical solution shown in Fig. 4 i
predicted by the group velocity (note tha¢l/3) = 0).

Remark. In the linear hyperbolic constant speed problem considered, the conserve
and nonconservative equations give rise to equivalent numerical approximations usin
finite volume and the finite difference methods. However, in the general case, wher
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speed is a function of the space coordinate, the conservative and nonconservative fo
lations, although equivalent from the analytical point of view, yield different numeric:
approximations. To investigate the influence of both forms of the equation in the numer
approach, we consider the hyperbolic equation

ap  IX¢
S Y o 12
at + axX (12)
or, in the non-conservative form,
g 3¢
— + — =0. 13
ot + X e (13)
In the finite volume method, as usual, we consider Eq. (12) in integral form:
9 Tonp —
0 | The =2y, g (14)

ot h

The analytic solution of Eqg. (12) is readily obtained using the method of characterist
(see, for example, [13]). It is given by

pt) =e'po(Xe), t=0.

So, the characteristics are exponential curves in(the)-plane and on these curves the
function decreases exponentially. That is, the initial distribution spreads and fades.
Now, applying the Fourier transform to Eq. (13) we obtain

P 0

— =0. 1
at ok 0 (15)

Hence, the spectrum is conserved on curkkes koe'. Analogously, we have for the
spectrum of the sliding averages

dd 9D kh kh\\ —
— —k—=(1-— — ). 1
ot ok ( 2 C°t< 2 )) (16)

The characteristics are the same as for ¢hequation. Howeverd changes over these

curves as
dz 1 kh cot kh
dt 2 2

andg—f >0,0< Rs_%; that is, the spectrurﬂ_v increases over the characteristics. Therefore
the spectrab and® have different evolution laws, and it is expected that their numeric:
approximations have different characteristics too.

Indeed, using the Padinite difference yields an equation similar to (15) within the
place ofk, where

_ 3sin2kr)
2k (2 + cog2kr))

Kfd

and a change over the characteristics of

3+ 6 cog2kn)

Zg = —1+ -
(24 coq2kr))
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FIG. 5. Plot of the error in the change rate for Rdfitiite volume (thicker line) and Peadinite difference
(thinner line).

The Padfinite volume method yields
Kty = Kifd
and a change over the characteristics of

_ 3cog2kn) sirf(kn)
YT 24 coZkm))?

The error in the rate of change is shown in Fig. 5. Both methods can resolve w
components with small cell wave length, but start to deviate from the correct deca;
k— % However, itis interesting to note that the Rdilite volume method yields a smaller
error in the decay, as compared with the finite difference method.

Remark. The leading term of the truncation error of artt2order Pad’interpolation
method, withr =m+n, is proportional to the 1zh derivative of the (smooth) function.
So, it is exact for all polynomials of degree smaller than\&e can use this fact to write

a general matrix equation for the coefficieatsi =1,...,m,b,i =1, ..., n. Given the
linearity of Eq. (4), we can work with a basis of the vector spBigge_; of polynomials
of degree smaller tharr 2The natural basis being the monomials j=1,...,2r —1,

substituting each basic elemenit j =1, ..., 2r — linto Eq. (4) and considering the origin
yields

m n b
doai' =Y T (-0 A+ -Dh =0 (17)
j=1 j=1

foralll =1,...,2r — 1. Thisis a 2 x r system of linear equations. However, due to th

symmetry of the stencil and the equality of symmetric coefficients, Eq. (17) is trivial |
| odd. The latter system of equations is equivalent to the matrix equation

[A B][Z] —d, (18)
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where the block matrices are defined as

(1 1 1 1
2 2
1 4 (m-1) m
A=|: = - : :
1 22r—4 . (m _ 1)2r74 m2r -4
1 22 (m— 1)2r—2 mZ —2
[ 1 1 1 1 i
1 7 n-1%—n-2>3 n®—(n—13
3 3 3 3
B= : : :
1 1 or—3 (n _ l)Zr—Cs‘ _ (n _ 2)2r—3 n2r—3 _ (n_l)Zr -3
2r—3 2r—3(2 - - 2r—3 -3
1 1 or —1 . (nil)zr—li(niz)zr—l n2r—17(n71)2r—1
L2r—1 2r—1(2 Do r—1 2r—1 i
[_1
2
0
d= )
| 0

Next we prove existence and uniqueness of a solution of (18). The proof is divided il
two steps. In the first, we prove that the finite differenceePiadérpolation problem can
be written as a Hermite interpolation problem. Then, in the second, we provéPtligt
equivalent to a Palfinite difference problem for the primitive @f

The finite difference Paglinterpolation problem can be stated as follows:

Given a smooth functiop € C°°, and natural numbers mm € N find coefficientsiai =
1,....mandb,i =1, ...,n, such that

m m 1 n n
> ating +¢' + ; atng’ = (; biting — Y by Tih¢> +o(h*™=1). (19)

i=1 i=1

Consider the real numbexs, ¢, k=0,...,m —1,i =0, ..., mwith
Xo < X1 <+ < Xmp-

The Hermite interpolation problefi for these data consists of determining a polynomia
P eI, whereng + 1 = Z{E’O n;, which satisfies the interpolation conditions

P(k)(Xi)=¢i(k), k:O,...,ni,l, i=0,...,m0.

There is a theorem (see, for example, [27]) which gives existence and uniqueness
solution ofIH. It is given by

mp ni—1

POO = > ¢ Lk, (20)

i=0 k=0
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whereL € I, are generalized Lagrange polynomials. They are defined as follows: star
with the polynomials

— x )k Mo —x: \MN
I = X=X H(X X’) , 0<i<my0<k<n,

k! =0 X — X
j#
put
Li,ni—l(x) :|i,ni—l(x)v I ZO,...,mO
and recursively fok =n; — 2, ..., 0,
ni—1
Lik(0) =ik = > 10 Liy ().
v=k+1
Consider the points.; = +i, i =1,...,n.
Claim.
a|=_|—|,l(0), i=1,...,m
and
b = Ljo(0), i=1...,n

To prove this we note thaty = 2r — 1, withr = n 4+ m. Then, Eq. (19) is exact for
the polynomialP given by Eq. (20). Substituting in Eq. (19) and taking into account the
unigueness of the Hermite polynomial proves the claim.

For the second part of the proof we first observe that giverL.* we have

T_h20 — /20

¢ = h ;

where® e C is the primitive of¢,
X
®(x)=/ ¢(u)du, X € R,
Xo

for somexg € R.
We conclude that thE is equivalent to the following problem:

Given a smooth functiogne C*°, and natural numbers mm € N, find coefficientsjai =
1,...,m,andb;,i =1,...,n,suchthat

m m 1 n . n .
Zaifih®/+®/+zaifih®/ =5 (Z bi T—ih®+z b Tih®> +o(h2mm=1)  (21)

i=1 i=1 i=1 i=1
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Using the result of the claim we compugi = 1,..., m, andb;,i = 1,...,n. Then
an easy computation shows that

bn == Bn
bn—l - bn = E’n—l (22)
by — by = by.

Equations (21), (22) represent the reconstruction via a primitive function, which is us
in [8]. Because of the stencil selection in the ENO approach (see [11]) the reconstruc
via the deconvolution and the primitive function yield different methods, the deconvoluti
being more accurate in some cases. So, it is expected that the same may occur witk the
method, if an ENO-like stencil selection is used.

Remark. We have performed the Fourier analysis in the sgi@R). Another possibility
is to work with the Fourier transform of'(T1), whereT! = R/Z is the 1-torus. That
corresponds to work with periodic distributionsBnThen, to each distributiop e S'(T?)
we may associate its Fourier series (see [25]):

¢=>_ oK)

keZ

Formally, the analysis proceeds as above, with the distinction that now the distributi
have a “discrete” spectrum; that is, we should k&eZ instead ok € R in the expressions
like (11).

As remarked in [29], the semidiscrete equation, Eq. (3), can be studied using a be
limited function (see also [18]). This fits into the present framework, since it correspor
to periodic functions with a finite discrete spectrum.

2.2. Parabolic Diffusion Equations

Similarly to the previous subsection, we use the linear diffusion equation

A 9%¢

— =v— 23

ot ox2 (23)
as a model for the description of the numerical approximation. Again, in the finite volur
approach we first integrate Eq. (23) over each control volagef a partition{c;};cz,
yielding
do =9 .
{_ﬂ _ P ez (24)
dt]j 12 h

The correspondintP can be stated as follows:

3Clearly T is diffeomorphic toS', where S' denotes the unit circle. However, in higher dimensions the
generalization ig", not S".
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TABLE IV
Coefficients and Leading Term of the Truncation Error for Some Pads Methods

Order a a as b, b, b, Truncation error

1
10
2 — — 51 3 — 23° £ )
1 a4 a 55440
344 23 _ 265 155 _ By 3O
1179 2558 262 786 2971080

12 3299013 18387 619 813155 835345 49483 __38229%2 ¢ty
725308 362654 725308 1087962 2175924 2175924 290413323200

_ _ _h s
20|

Given a smooth functiog € C*°, and natural numbers mm € N, find coefficients;ai =
1,....,m,andb,i =1,...,n, such that

> ating +¢' + Y atng

i=1 i=1

1/ . n B
=5 (Z biTiv12nd — Y by T(i-l/2)h¢> + o(h?mm-1), (25)

i=1 i=1

The solution ofP above can be computed as above using either the Taylor series ex
sion or the second derivative of corresponding Hermite interpolating polynomial. Table
lists the coefficients and the leading term of the truncation error for the 4th-, 6th-, 8th-,
12th-order Paglinterpolations witim+1>n>m.

The Fourier analysis for the parabolic equation proceeds as in the analysis of hyper
equation. The exact relation yields

do _
E = —szq),
SO,
d(t) = De’™®!,  teR (26)

This means that the spectrum of the sliding average decays at an exponential rate, wt
proportional to the square of the wave number. Thesfaterpolation provides an analogous
law of evolution with a decay ratio,k?, where

n ol i1
(&>1/2=% sin(kh) >i_1bysin((j — 3) kh) KR @7

v 2 ) 14+2) 7 ajcogjkh)

Figure 6 showsv,/v)/? as a function of the grid wave number for the 2nd-, 4th-, 6th
8th-, and 12th-order methods. As expected, increasing the order of the method impr
the spectral resolution of the method.

2.3. Transport Equations

In this subsection we consider the linear transport equation

dp A9 3%
AT Sk A 2
at o TV (28)
Integration of Eq. (28) over each control volumgof a partition{o;} <z yields
do o — i —
[_‘P} +C¢J+l $i-1 _ U¢J+1 ?; L e 29)
dt |1 h h
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FIG. 6. Plot of decay ratio versus grid wave number for diffusion using theeRadthod: (a) 4th order,
(b) 6th order, (c) 8th order, (d) 12th order, () CD 6th order, (f) CD 8th order, (g) CD 12th order.

One obvious way to solve Eq. (29) is to apply the ®adérpolation, Egs. (4) and (25), to
its convection and diffusion components, respectively. However, Mahesh in a recent pe
[21] proposed a coupled-derivative (CD) approach to the finite difference compact sche
in which both derivatives are computed simultaneously. The resulting method showe
better spectral resolution than the usual uncoupled method.

In the CD approach thi problem for the convection term can be stated as follows:

Given a smooth functiogp € C*, and natural numbers mm, o€ N, find coefficients
g,i=1....,mNh,i=1...,n,andg¢,i =1,...,0,suchthat

Zaihih¢+¢+zaﬂih¢

i—1 i—1
n _ n _ [o] o]
= Z bit—i+12n¢ + Z biti—12n¢ + h (Z GiT_ing — Z G Tih‘z’,)
i—1 i—1 i—1 i—1
+ 0<h2(m+n+o)—1)_ (30)

For the diffusion term we have:

Given a smooth functiogp € C*, and natural numbers mm, o€ N find coefficients
d,i=1...,me,i=1,...,n,and f,i =1,...,0,suchthat

m m
D bt ind + ¢+ diting’
i=1 i1

1 n _ n _ [0} (o]
=5 (Z 8T ityand — Y 8Ti-yand + Y fitiingd — Y _ fiting
i-1 i—1 i—1 i-1
+ 0(h2(m+n+o)—1)‘ (31)

In Tables V and VI we list the coefficients and the leading term in the truncation order
the 6th-, 8th-, and 12th-order Rathterpolations witth — 1 < m=0 < n. A comparison of
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TABLE V
Coefficients and Leading Term of the Truncation Error
for Some CD Pad Methods: Convection

Order

e

& b, b, (] C Truncation error

15

1 — RN C)
16 16 5040
53 _ 1 1 _ _ 5e®
54 108 12 90720
_ 23 2755 __ 445 1 1 n? _ faz
132 2592 2592 27 216 97297200

o G5 5~

12

the constantin the leading term of the truncation error for the CD scheme with the uncou
one shows a smaller asymptotic error for the CD approach, for all orders.

Figures 2 and 6 show the phase speed for the convection and the decay ratio fc
diffusion term, respectively. As can be seen from these figures, the CD approach shc
noticeably smaller error than the standardéaxthod. A distinct feature of the CD methoc
is that it displays a decay rate higher than the true one for high cell wave numbers. Tt
in contrast to the standard Radihich exhibits a decay rate smaller than the true one f
all cell wave numbers.

Clearly, CD Pad methods may be applied to pure advection or pure diffusion probler
However, in this case they require the computation of a “useless” derivative. This comg
tion doubles the work required for the evaluation of the derivative, making it less attrac
than the uncouple Padhethod for problems of pure advection or pure diffusion problernr

Remark. Equations involving second and higher derivatives can be discretized an
gously. For instance, the Korteweg—de Vries (KdV) equation

au+au2+33u_0
at  ax  9x3

requires the evaluation of the second derivative. This can be done using the @D |
approach solving the followintP problems:

Given a smooth functiop € C*, and natural numbers mm, oe N find coefficients
a,i=1,...,mh,i=1...,n,andg¢,i =1,...,0,suchthat

Zaiffih¢+¢+zaifih¢

i—1 i—1
n _ n _ (o] o]
= Z bit—it12n¢ + Z biti—1/2n¢ + h? (Z G_ing” + Z G Tih¢”>
i—1 i—1 i—1 i—1
+ o(hz(m+n+o)71) (32)

TABLE VI
Coefficients and Leading Term of the Truncation Error
for Some CD Pad Methods: Diffusion

Order

o
-

d, e & f, f,  Truncation error

— _ _9 — e @
3 8 2016
1 _ 23 79°_ £

108 18 "~ 16329600
63 40 25 1127312 £

324 27 432 73556683200

|
Nl ol o
~5 sls

12




156 MARCELO H. KOBAYASHI

TABLE VII
Coefficients and Leading Term of the Truncation Error of Some
CD Padé Methods for KdV Equation: Convection

Order a a, b, b, C1 C Truncation error
S — 25 — L — IO}
32 32 9 2520
1 — 109 _i i _ __ fe®
48 144 36 48 36288

209 1153 7955 31315 7 1 20h*? (12
12 —== —= — — === > 5= — = 2
81 2592 15552 15552 27 216 194594400

and

Given a smooth functiop € C*°, and natural numbers m, 0N find coefficients
d,i=1....,m,e,i=1....,n,and f,i =1,...,0,suchthat

m m
D diting” +¢"+ ) diting”
i—1 i1

1 n _ n _ (o] [e]
=z (Z & T—i+1/2h® — Z 8T -1/2h® + Z fit_ingd + foop + Z fiting
i—1 i—1 i—1 i—1

+0 (h2(m+n+o)fl) ) (33)

Note the inclusion of the ternfpg in Eq. (33). In Tables VII and VIII we list the
coefficients and leading term of the truncation error for the 6th-, 8th-, and 12th-order ¢
Pad methods.

Remark. The computational cost of the Raéihite volume method is the same as for
the Pa@’finite difference methods. Indeed, writing tifeproblems in matrix form

Af™ = Bf, (34)

we see that the matrid is the same as for the finite difference method. The commo
practice is to perform an LU decomposition of the matinnly once, and store the and
U matrices. Hence, computation of the derivatives involves evaluating the RHS of Eq. (
followed by forward and backward substitution. Lele [18], using a Cholesky decompositi
of the symmetric par for a tridiagonal scheme, gave an operation countMf B, and
5N for multiply, divide, and add/subtract, respectively. A radix 2 FFT (see [3]) require

TABLE VI
Coefficients and Leading Term of the Truncation Error of Some CD Pad&
Methods for KdV Equation: Dispersion

Order d; d, e (=% fo fi fy Truncation error

32 32 32 40320

1 421 1 _ 159 51 _ __hn fao
1039500

1 315 — _15 _1 _ @

20 40 0 10 20

_ 34 7 6486715  _ 330565  _ 1935  _ 1570 10855 __h2  fay
261 8352 601344 601344 116 783 100224 1519333200




PADE FINITE VOLUME METHODS 157

2N log, N multiplies and & log, N adds. Also, as pointed out by Mahesh [21], the co:
incurred by the use of CD Padhethods is essentially the same as for the uncoupled or
3. MULTI-DIMENSIONAL EQUATIONS

Higher dimensional equations require the average of the variables at the cell faces
example, the two-dimensional convection problem can be written as

d e 3 T X2 _ o X2 . X1 _ X1
do b T_hy/2P Thy /20 hy + G T_hy /2P Th,/2Q hy = O,
dt h]_ h2

where

— 1
T M

and the superscriptg; andx, indicate the one-dimensional averaging in theand x,
directions, respectively; that is, for example,

1
<£X2:h72‘/RXh2*¢'

The choice between sliding averages or point values for methods that are 2nd ord
lower is immaterial, since both variables differ by a 2nd-order term only. However,
higher order methods this choice can influence the stencil for the interpolation. Take
instance the usual QUICK scheme of Leonard [19] and the 4th-order method propost
[20]. Both methods are based in point values. Now, because cross derivatives appear
Taylor series, as the averaging is needed in the transverse direction to the interpolation
require 13 and 25 points in the stencil to obtain 3rd- and 4th-order accuracy, respecti
Hence, these methods need points out of the Cartesian product of the one-dimen:
stencils for their one-dimensional convection counterpart. All methods developed at
use the sliding average of the dependent variable for interpolation. The integration il
definition is performed in both directions, which accounts for the variations in the transve
direction.

In conclusion, the stencil of the methods developed above for higher dimensional p
lems is the Cartesian product of the stencils of their one-dimensional counterparts. How
when using point values we need points out of the latter product in order to take into acc
transverse variation of the variables.

Another feature, unique to the interpolation on higher dimensional domains, is
anisotropy in the interpolation of the convection term. In fact, the symmetry to the grc
of rotations of the Laplacian operator means that it is isotropic, or, in other words, th
sinusoidal wave propagating in any direction will experiment the same rate of decay.
discretization of the Laplacian operator presented earlier possesses this property as
However, the convection term has the velocity direction as a preferred direction (see [.
It may be shown that

(o = k—lh(cos(a) sin(kgcoga))c(kcogw)) + sin(a) sin(kgsin(a))c(k sin(w))),
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FIG. 7. Polar plot of phase speed anisotropy for advection using (a) 4th order Lagrange, (b) 4th osder P
(c) 6th order Lagrange, (d) 6th order Ragé) 6th order CD Pad(f) 8th order Pagl’ (g) 8th CD Pad, (h) 12th
order Paé; and (i) 12th order CD Pagfor cell wave numbek = £, 2, ..., 19

wherec, is the phase velocity andis the angle between the direction of propagation an
the x; axis.

The anisotropic propagation is displayed in Fig. 7 for several methods. The curves in’
figure are polar plots of, /c at fixed cell grid wave numbers. For each curve, the radie
distance at an angterepresents, obtained for a wave propagating in that direction. The
curves corresponds fo= zio, s i—g; the outmost curves correspond to snkalFor the§e
waves the propagation is nearly isotropic and the phase speed is close to exact. F&r lar
the waves have a small phase speed and the propagation is anisotropic. It may be see
in the Pa@ methods the anisotropy error is noticeable in a narrower range of short wa
lengths, when compared to the Lagrange methods. Moreover, the CD methods displa
even smaller anisotropy error for all orders and wave lengths.

Remark. The notion of group velocity applies to multi-dimensional equations as we
The definition is the same as above, with trivial adaptations (for instance, now we m
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consider the wave vectd). In the general case, group velocity depends on the wa
number, and its direction can be different from that of the wave vector.

Remark. In[24]itis mentioned that experimental evidence suggests that acoustic we
are strogly coupled to many mechanisms encountered in turbulence. The error in \
equation describing the propagation of the acoustic wittePagethods is predominantly in
the high wave number range. So, except for the unusual case of vanishing sound spee
of high frequency and thus analogous to sound rays. In this situation, we can apply the tf
of geometric acoustics (see [16]) to the propagation of error “rays” in nonhomogene
medium, that is, where is not constant. It can be shown that the magnitude of the wa
vector varies according to the simple law= w/c, while its direction changes according to

1
K= —E(n -gradc),

whereK is the curvature of the curve described by the ray anglthe unitary vector of
the principal normal to the curve. In other words, the error rays turn in the sense of
diminishing of the speed.

4. OPTIMIZED PHASE ERROR AND SPECTRAL PAD E INTERPOLATION

In addtion to maximal order schemes, classes of parametrized nonmaximal order
finite volume methods may offer optimization opportunities which go beyond the maxir
order of accuracy. In [18], a class of compact finite difference schemes with spectral-
resolution is proposed. The methods are obtained by constraining the error to be o
order, and the phase speed to match the exact value of the phase speed at some pre
locations. In [8] the authors define a family of parametrized schemes which minimizes
L*-norm of the error in the phase velocity for a given interval of cell wave numbers. T
is, they minimize the dispersion error,

Rrﬂa)( ~ ~
Ea (@, Kmao) = / e(®) — ol dk.
0

with the restriction that the method must be of at least 4th order of accuracy. Both mett
in [18] and [8] use the stencil of the 6th-order Radéthod referred to above.

In [8] the authors concluded thak o takes values in% <ayopt<0.431 (the value
of al,optz% corresponds to the 6th-order Radiethod). They also considered optima
methods with respect to anisotropic errors, the values of the optimum coefficient beir
% <a0p<0.408.

Other target functions may be considered; for example, the standagdrRarpolation
optimizes the order of accuracy in a given stencil. It is evident that the optimum solut
depends on the target function. Consider the ability of a method to handle discontinui
the occurrence of which in compressible inviscid flows is relevant in applications. In [.

it is shown that
. [ U(c(u) — oyt
s.n<—2 )

w/h
2
||€||2=/
0

wheree is the global error of a semidiscrete approximation to this problem. We look for |
optimum methods as— 0 andt — oo. Using siu(c—c)t/2) ~ u(c—c)t /2, for sufficiently

2 2du

T

h
sin(uh/2)

s
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smallt € R, it follows that the former minimizes thie>-norm of the consistency error

©hhj2 ux du
Th :/n/h WHJ(C—C)eI Z

Whent — oo, the least error is obtained with the method which maximizes the order
accuracy. To show this we first perform a change of coordinatait; then,

nt/h ) U(c_c)
2 _
||e||2_/0 sm( 5 )
7t/h 2 e 24
~/ .’Sin<U(C C)) d_U
0 2 tw
7/h —
=/ Sin(u(c(u) c)t)
0 2

2du
The result follows from the fact that, in the topology&f we have

2

h
sin(uh/2t)
_h
uh/2t

h 2
uh/2

2du
tmr

lim S _ s (35)

n—o00 X

Then, for sufficiently large values o¢fc R the value of||6||§ is dominated by the error in
the phase velocity near the origin. A Taylor series expansion shows that this error dec
at the same rate as the truncation error.

To prove (35) we first use integration by parts to show thdtéC* N Co, whereCo =
{f eC:limy_ .o f(X) =0}, f’eL?, and for alln e N the integral

/sin(nx)f(x)dx

R

exists; then
lim /sin(nx)f(x)dx:o.
n—oo R

Now, given ayr € S itis easy to see that the function

f:XGRI—)limME
y—X y

R

belongs toC* N Co and f’ € L* (just use the Maclaurin series and the fact thae LY).
The result follows if we observe tha#™ € A, so

<sin(An>“<)’ W> :/ sin(Anf()wdx L 2y 0)
X R X

for all ¢ € S, where we have used the fact tt@t@ dx = 7 (as an improper integral
of Riemann).
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Spectral methods are based on representing the solution of a problem as a trun
series of global smooth functions. The latter are often trigonometric functions for a
riodic boundary condition, or Chebyshev or Legendre polynomials for general bounc
conditions. A prominent characteristic of these methods is exponential convergence.

Using the fact that the Padhethod corresponds to the use of the Hermite polynomi
we relax the requirement of being a global smooth function and define a piecewise spe
Pad method (SPM) as follows:

In a mesh comprising N control volumes, use the (N/8th)-ordee Pagkthod.

Then, the error decays at a rate®fN"/8), which is faster than any finite power of
N1, Also, as the Fourier analysis have shown, the phase speed using the SPM will
progressively close to the exact one, with respect to both the cell wave number anc
anisotropy error. In actual computations we dse- 2P for p=4, .. ..

ExampLE 4.1. We close this section with an example comparing severa Patliods.
We resolve the problem

0 , 06 _

=0, xe[0,1], t=0
at X

with periodic boundary conditions and initial profile

Ke V(x-ab=x) jf x ¢ [a, b],
¢(0,x) = { .

0 otherwise
wherea, b, K € R are constants. In all cases= 1, b= 2, K =€ (to make the peak
unitary) and the temporal discretization is accomplished with the 4th-order RK algoritt
This bell-shaped profile corresponds B&-distribution with high gradients in the fore and
aft portions of the bell and a high curvature region close to the peak. It can serve as test
for peak resolution and/or monotonicity. A final tinffe= ‘—1‘ is used in all simulations for
all grids and methods at CF: 1—10.4 At this CFL level the errors due to time discretizatior
are negligible compared with the spatial terms. The maximum errbrisitalculated and
is shown in Fig. 8.

The optimized method of Gaitonde and Shang display a smaller error than the 6th-c
method for grids with less than 32 control volumes. In this range of grid parameter,
errors are still in the region of relatively high cell wave numbers and so where the optimi
method has a better performance. After that, most of the monochromatic waves with s
cell wavelength are resolved, the error is dominated by the asymptotic order, and the
becomes superior. The exponential decay in the error for the SPM is also evident.

Remark. All methods considered above present an error in the phase, but no errc
amplitude. This is the case for any Raghethod with a symmetric stencil for the sliding
averages and the variable (it is immediate from the Fourier analysis). This is valid for
infinite domain or for periodic boundary conditions. However, in general, the bound

4To avoid any contamination from time errors, the result for the SPM in the grid with 128 control volume:
obtained with the exact solution of the semidiscrete equation. Thatis, writing the latigyds= (o./At)Cep we
computep(T) = eg¢T/A0 g — SgerT/a0 G 14 whereo, is the CFL number( is defined in Section 65 is the
matrix with the eigenvectors @fin its columns, and\ is the corresponding diagonal matrix with the eigenvalue
in its diagonal.
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FIG. 8. Plot of maximum error versus grid parameter for pure advection using varioesniettiods. Solid
thin gray lines are asymptotic curvédr', with A a constant and the corresponding order of accuracy. The solid
black line is the spectral method. The thick solid gray line is the optimum 4th method of Gaitond and Shang \
Kmax = g Points in increasing gray levels are the numerical solutions corresponding to 2th, 4th, 6th, and8th F
methods, respectively.

conditions in a finite domain will break this symmetry and the numerical solution wi
display some damping effect (see [4], and also Section 5).

5. BOUNDARY CONDITIONS

Boundary conditions represent a particular case of the geli¢natoblem. However,
boundary effects may affect the accuracy of the solution as well as its stability. In tl
section we study their effect on the accuracy, and we defer to Section 6 our analysis of t
effect on the stability.

Some authors have suggested that the approximation on the boundary, if one ords
accuracy below that at interior interpolation, may not affect the global (uniform) order
accuracy (see, for example, [4, 24, 29]). In [29] this idea is supported using the notior
the reflection ratio. We use this concept to show that in the case of tleefindd volume
method, the boundary approximation has a determining effect on the global accuracy.

To compute the reflection ratio, we need to find normal, or fundamental, solutions of
time-Fourier transform of the semidiscrete equation. We write the latter as

de P11 — P; :
- 2T -0 7. 36
dtj+1/2+C h ’ Ie (36)

Then, we define the time-Fourier transformgos

q>=/¢e*““dt.
R

Note that we use the same letter for the time-Fourier transform as for the space-Fot
transform. Since we do not use both at the same time, this should not cause confusion
take the time-Fourier transform of (36) and obtain

.= D1 — D
Ia)q3j+1/2+CL

=0.
h
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Using the 4th-order Padhethod and rearranging terms we obtain
T+ 14+k)is =3k —« Y,

wheres=wh/c, and®;,1,2/®; 1,2 = «, | € Z. The characteristic roots are

_ —25—-i4/3/3-%2
1= s—3i

—25+4i4/3/3=¢%2

Ko = . .
s—3i

We consider the following approximations at the boundary:
1. 3rd-order Pagl’

1 — _
AN + 2¢N-1 = > (50n-1/2 + dn-3/2)-
2. 4th-order Pagl”
1 _ _
ON + 3Pn_1 = 5 (17¢n_1/2 + 8PN_3/2 — Pn_52)-

At the control volume closest to the boundary Eq. (36) with the 3rd-ordez Redhod
at boundary yields

C3tag 30+3) Gtz | 8%e(+3)
1+2 4+t+a 1+2 A+ i4i

K2

is(1+p) =

whence, solving for the reflection ratio, we find

_ V/3(—6i +5)v/3— 52— 3(—6i +5+is?)
 V3(—6i +5)vV3— 2+ 3(—6i +S+is?)

Analogously, we find for the 4th-order Radiethod at the boundary

p(s)

V33— 52(24+ s(—6i +5)) — 3(24— s(6i + (3—iS)S))
V33— 5224+ 5(—6i +5)) + 3(24— S(6i + (3—i5)s))

p(s) =

In Figs. 9 and 10 the absolute value and the phase of the reflection ratio, respectivel
shown. Using the Padmethod, the region of propagating waves enlarges frens & 1
to 0< s <+/3. Moreover, the spurious oscillations generated at the boundary by the -
order Paé"method, independent of the boundary approximation, are much smaller t
those generated by the 2nd-order @&dite difference method. The difference between th

absolute value of the reflection ratio for the 3rd- and 4th-order boundary conditions ¢

not seem significant (note that the difference in the phase of the reflection ratio is not sn
However, a Taylor series expansion of the reflection ratio yields

1. 3rd-order Pagl”
13

(9= >+ o)
=725 '
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FIG. 9. Plot of the absolute value of the reflection ratio versus specific frequensing the Pael method:
(a) 2nd-order finite difference with 1st order at boundary; (b) 4th order with 3rd order at boundary, (c) 4th or
with 4th order at boundary.

2. 4th-order Pagl”

4

__5 4
p(sS) = 96+ o(s").

We conclude that the implicit character of the Padéthod makes it more sensitive to the
boundary closure. Indeed, for a 4th-order @awthod for the inner points and the 3rd-order
boundary closure, the global accuracy of the method is of 3rd order.

ExAMPLE 5.1. We resolve the problem

¢ 99
— 4+ =0 0,1, t>
TR , xel0,1], t=0

$t,0 =0
Ke V(x-ab-x) if x ¢ [a, b],
0 otherwise

¢(0,x) = {

4.5
4.25

3.75

Reflection ratio

w
tn

3.25 b
a

0 025 05 075 1 125 15 175
s

FIG. 10. Plot of the phase of the reflection ratio versus specific frequsmsing the Paglmethod: (a) 2nd-
order finite difference with 1st order at boundary, (b) 4th order with 3rd order at boundary, (c) 4th order with -
order at boundary.
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TABLE IX
Effect of the Boundary Closure on the Maximum Error of the 4th-Order
Accurate Pad? Finite Volume Method

3rd order 4th order
Boundary
grid llell s Numerical order el Numerical order
8 13831x 10! — 1.0871x 10t —
16 25453x 10! —0.88 22546x 107t —1.06
32 88983x 102 1.52 77016x 102 1.55
64 55606x 1073 4.00 53655x 1073 3.84
128 45039x 10 3.63 34711x 10 3.95
256 49249x 10°° 3.19 21577x 10°° 4.01

wherea, b, K e R are constants. In all cases= %, b= %, K =e'16, and the temporal
discretization is accomplished with the 4th-order RK algorithm. A final fime % is used
in all simulations for all grids and methods at CELl—lo. This value ofT corresponds to the
critical instant when the peak crosses the outlet. At this CFL level the errors due to t
discretization are negligible compared with the spatial terms. The erfisatalculated
and reported as tHe*>-norm. Table X shows the effect of the boundary approximation c
the accuracy of the 4th-order Rafinite volume method.

As expected the global order of accuracy is determined by the boundary closure: it
3rd order for the 3rd-order accurate closure, and it is of 4th order for the 4th-order acct
closure. Moreover, the asymptotic order is only achieved for relatively fine grids.

The effect of the boundary closure on global accuracy of solution in a transport prob
using the CD approach may be even more pronounced. Indeed, in this case, not only
problem of an elliptic character, but the coupling in the interpolation problem makes
implicit nature of the method even stronger. To illustrate this we consider.

ExampLE 5.2. We solve the transport problem

dp 1 d%p

azp—em, XG[O,].],
$0) =0

= £oPe
)= ePe_ 1’
The exact solution is
1— ePex
P (X) = 1T x € [0, 1].

In all grids we use Pe- 10 and compute the maximum error in the sliding average, the int
face values of the variable and its first derivative. Tables X, XI, and Xl show the effects of
boundary approximation on the accuracy of the sliding average, interface values, and i
face derivative, using the 6th-order CD [editiite volume method. The boundary closure
considered are:
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TABLE X
Effect of the Boundary Closure on the Maximum Error of the Sliding Average
Using the CD 6th-Order Accurate Pad Finite Volume Method

5th order 6th order
Boundary
grid ll€ll oo Numerical order llell Numerical order
8 5.3693x 1072 — 2.9127x 1073 —
16 36119x 10 3.89 12802x 10 4.51
32 18785x 10°° 4.27 38778x 10°° 5.05
64 85455x 1077 4.46 94831x 108 5.67
128 32238x 108 4.73 18570x 10°° 5.67
256 11071x 10° 4.86 32359x 107 5.84

1. Inlet: 6th-order Dirichlet

, , 1 49 28 1447 — 67 — 5- 1 -
$o — 491 = n —gd’o - §¢1 + 7451/2 - ﬂfﬁs/z + 5‘155/2 - 72¢7/2 .

2. Outlet: von Neumann
(i) 5th-order

8 h o, 31— 1
éN + §¢N—1 = ?(¢N — 2¢n_1) + ﬁ¢N—1/2 - ﬁ¢N—3/2‘

(i) 6th-order

27 3h , 325-— 13- 1 -
én + z?)d)N*l = Z;)(‘pN —3¢pn_1) + @‘PNA/z - @¢N73/2 + 1_38¢N’5/2'

Again, the imposition of lower order boundary conditions at the outflow (and only ther
lowers the overall accuracy. It is also noteworthy that in theeRadthod the high order of
accuracy for the sliding averages is the same for the interface values and the derivativ
the interfaces. This contrasts with usual methods for which the order of the latter two val
decrease one order of accuracy for each derivative (see, for example, [11]).

TABLE XI
Effect of the Boundary Closure on the Maximum Error of the Interface Values
Using the CD 6th-Order Accurate PacE Finite Volume Method

5th order 6th order
Boundary
grid ll€ll o Numerical order ll€ll o Numerical order
8 7.0614x 102 — 3.7353x 1073 —
16 55274x 104 3.68 19197x 10 4.28
32 28681x 10°° 4.27 57913x 10°® 5.05
64 11643x 10 4.62 12720x 1077 5.51
128 41542x 10°8 4.81 23622x 10°° 5.75

256 13877x 10°° 4.90 40085x 10711 5.88
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TABLE XIlI
Effect of the Boundary Closure on the Maximum Error of the Interface Derivative
Using the CD 6th-Order Accurate Pad Finite Volume Method

5th order 6th order
Boundary
grid el Numerical order ll€ll o Numerical order
8 6.8994x 1072 — 3.6472x 102 —
16 55270x 1073 3.64 19191x 103 4.25
32 28682x 10 4.27 57910x 10°° 5.05
64 11643x 10°° 4.62 12719x 10°¢ 5.51
128 41544x 1077 4.81 23622x 1078 5.75
256 13878x 10°® 4.90 40083x 107 5.88

Remark. This effectof the boundary condition on the global accuracy ofthe Redhod
is not exclusive of the finite volume formulation. In the finite difference method the po
closest to the boundary has a similar equation. Add to this the unavoidable approxim:
of the evolution equation at the boundary and the finite difference method would be at |
as sensitive to the boundary approximation as is the finite volume method.

Remark. Attheinlet, the finite difference and the finite volume methods require differe
approaches too. The finite difference method needs a downwind extrapolation fron
interior points to the boundary, and as is well known this is highly unstable. In contrast,
the finite volume method no approximation is needed since it can use the exact presc
value atthe inlet, both in the discretized equation and in the Reedhod. Thus, for example,
a4th-order Paglmethod does not require any special treatment for the inlet. Sixth and hic
order methods require some modifications at points close to the inlet, which depends o
specific method (see Section 6 for an example with the 6th-order method.)

Remark. Ina pure diffusion problem and using the standardtadthod, the derivative
at the boundary does not involve the prescribed value of the variable. This problem ca
overcome by considering the value of the function available at the boundary in the ir
polation problem. For instance, at the right boundary, and for a 4th-order accurate bour
condition, we have

, , 1/5 89— 127 - 4 —
dn 60y = h §¢B + T8¢N—1/2 - T8¢N—3/2 + §¢N—5/2 ,
wheregg is the prescribed value of the variable at the boundaryNrnsl the number of
control volumes in the grid.

Remark. Poinsot and Lele [24] proposed characteristic boundary conditions for EL
and Navier—Stokes equations. They advanced the solution in time on the boundaries t
ing a characteristic system. In this system they used a 3rd-order one-sided space deri\
This methodology can be used in the finite volume framework as well. Moreover, using
Hermite polynomial, which interpolates the sliding average, and whose derivative inte
lates the interface values, we can perform a complete characteristic evolution. Indeed
polynomial may be used as a reconstruction polynomial and we can directly apply ei
a local Cauchy—Kowalewski procedure or a characteristic method (see [11]). For exan
using the characteristic method for the linear advection problem with the 4th-order F
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method and a Simpson'’s rule yields
t+At At
/t g dt = F(Hi/(xi L0 +4H/ (x5 — cAt/2,t) + H/ (% — CAt, 1))

foralli =1,..., N, whereH is the Hermite polynomial

Hi (X) = ((;ih_l/z + (5:1+1/2) h’?i (X) + ¢in+17~7i+l(x) + ¢in717~7i—l(x)

foralli =1,...,N —1,x € R, with

ni(x) = (1 =2 ;X)X = X)) liza(x)%  i=1...,N-1 xeR
fier = (X — Xi+1)(li21(X))?, i=1,...,N—1 xeR
and
|ij[1(X)=X_XiIl i=1...,N—1 xeR.

+2h

At the boundary we use the Hermite polynomii&_,, that is,Hy = Hy_1.

This procedure requires less storage than the RK one and is faster éom#utds since
it needs only one evaluation of the interface values per time step. However, the Herr
polynomial approximation is, except for the center point used in the Redhod, one order
of accuracy lower than that for the sliding average. So, the accuracy of the resulting met
is one order of accuracy lower than that using the RK method.

6. STABILITY ANALYSIS

We now turn to the analysis of the stability of the proposed methods for both explicit a
implicit temporal discretization. There are many definitions of stability in the literature «
CFD (see, for example, [4, 10]). In the present work, we consider the notions of Lyapur
and asymptotic stability.

Recall (see, for example, [1]) that a stationary solution of an autonomous dynami
system is said to be Lyapunov stable if all solutions of the equation, with initial conditio
in a sufficiently small neighborhood of the equilibrium point, are defined for all positive tin
and converge uniformly with respect to time to the stationary solution as the initial conditic
tend to the equilibrium point. A stationary solution is said to be asymptotically stable if
is Lyapunov stable and if, in addition, all solutions with initial conditions sufficiently clos
to the equilibrium point under consideration tend to this equilibrium poittastoo.

We start with the stability of the linear hyperbolic equation with periodic initial condition:s
discretized with a Pafinite volume method. The semidiscrete equation can be written

d¢ Oc , =
dt = arce (37)

CAt

whereo, = == is CFL number, and

51/2
9] = :

On-1/2
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The operatot € End(RV) is given locally as

CPHit12 = di — Py, i=0...,N—-1,

whereg is obtained with the Paddiscretization method.
Consider the implicit Euler method. In this case the fully discrete equation can be wri
as

n+1

" = 4" + 0cCo

It is easy to see that any centered scheme is unconditionally stable. Indeed, given th
thatC is skew-adjoint, all of its eigenvalues are pure imaginary (one or two of them
zero; see Eq. (39) below):

1
Amin(id — (GCC)Z)

Iid — ocO) [, =
=1

This proves the assertion.
Now, we turn to the analysis of the 4th RK algorithm for the solution of the semidiscr
problem. Given the symbolic polynomial

1
RK|(z)=1+z+~-~—|—|—|z', | e N,

the associate discrete dynamical system is given by

N+l

¢ = RK4(0c0)¢",

where, in the present linear case, R& € End(RV), | € N is the Runge—Kutta operator,
which corresponds to tHetruncated series of the exponentiabgf, that is,

. 1
RK(0cC) =id +0C 4 --- + IT(UCC)I, | e N. (38)

The operato€ is skew-adjoint, so the origin is a stable equilibrium point of the semidi
crete. Indeed, this follows from the fact that

dg* . — (CP\ _
dt—ZUdP'(At)—O,

and so, the solution will stay at the sphere containing the initial condition.

This means that any instability in the discrete formulation comes from the time discret
tion. And, in general, increasing the order of the time discretization improves the stab
of the method. This contrasts with the spatial discretization, which loses stability with
increase in accuracy. However, this is a consequence of the fact that the latter convert
an unbounded operator.

Analogously to the semidiscrete equation, we compute

“h+1.2

3 4
@ H2= (M2 - (C¢)+576(C¢)
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Note that any centered scheme would lead to this equation, and so, for a sufficiently s
CFL number any centered scheme can be made stable for the 4th-order RK.
To determine how small the CFL number must be, we solve

——(c3) +576(c4v) <0, wveRN

Then a necessary and sufficient condition for stability is

22
ICI,

Oc < Ocmax =

Given Ac End(RV), let p(A) denote its spectral radius. By definition

ICllz = sup [[Cvll2 = p(O),

lvllz=1

where we have used the fact thét is skew-adjoint. Taking into account that
(gknt/220/Ny o N1, fork=0, ..., N — 1 are eigenvectors @f with eigenvalues

_,bico -3 k N
N 1+2§:J=1aJ COS(jkn'/N)
we obtain
Zj le CO#(J B _)kh)
Cll, = sup |4i sin . 40
Il = |kh|<e, (2) 142%™, aj cogjkh) (40)

Table XIII shows the CFL limit of stability (independent of the grid) for the 4th-orde
Lagrange method and for the 4th-, 6th-, 8th-, and 12th-ordee Rathods. As expected,
increasing the accuracy of the spatial discretization decreases the limit in the CFL for
stability.

Equation (40) is thé.>°-norm of the spectral function of the operafbrSo, the stability
limit coincides with that obtained by the von Neumann method. Note that it is not «
immediate consequence of the Lyapunov theorem (see, for example, [K)=fdimplies
Al =

A simple calculation shows that a fully discrete algorithm is von Neumann stable
S =0 F(C)([0, 1/2]) C S, whereSis the stability region (see [29]). For RK methods we
have § = RK,:l[Bl], keN, whereB; ={ze C:|z| <1}. For completeness, the stability
zone for the 1st-, 2nd-, 3rd-, 4th-, 6th-, and 8th-order RK methods is shown in Fig. 11.

Itis interesting to note that any centered method is unstable for the 1st- and 2nd-order
methods. This follows at once from the fact that the region of stability of these method:

TABLE XIlI
CFL Stability Limit for the 4th-Order RK Method
with Some Spatial Pad Discretization Schemes

4th Lagrange  4th Pad” 6th Pag” 8th Pad” 12th Pad’

O, max 2.0612 2/2/3 1.4217 1.2829 1.1640
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FIG. 11. Stability region for the RK methods of order 1, 2, 3, 4, 6, and 8.

tangenttothe imaginary axis and that for any centered métiigdC)) = 0. Alsointeresting
is the fact that for centered methods the 4th-order RK method provides an improved sta
as compared to the 6th-order method. In other words, from the stability viewpoint, anc
centered methods, it does not pay off to move from the 4th- to the 6th-order RK.

In Fig. 12 we plotS, for the 1st-order upwind scheme, the 3rd-order QUICK schem
the 4th-order Lagrange scheme, and the 4th-ordez BeliBme, all fos. = 2,/2/3. At this
CFL the QUICK scheme is stable for RKits stability limit for the 3rd RK is, within three
digits of accuracy, 1.625, which is slightly smaller thayf2/3), the Lagrange method is
also stable for R, and, interestingly enough, with this CFL number the 1st-order upwil
scheme is not stable even for a 4th-order RK method. The dissipation generated by
scheme, which helps to stabilize it, for instance, in the Euler explicit method, is exces
for RK4. Also, the Pad method is more restrictive in CFL terms than is the Lagran
method. However, this gain in stability is more than compensated by the improved spe
resolution of the Paglmethod.

= - ]
n = ln ix = i
)
= §

= et f
m U bd WA L

=8 1] -3 1]

=18

-
I"l

=
[
= b

- 2 L] =2 ]

FIG. 12. S, for (a) 4th-order Pagl’(b) 4th-order Lagrange, (c) 1st-order upwind, and (d) 3rd-order QUICK.
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TABLE XIV
Diffusion CFL Stability Limit for the 4th-
Order RK Method with Some Spatial CD
Padé Discretization Schemes

oc 6th 8th 12th
0.5 0.2901 0.2849 0.2823
1 0.2407 0.1912 0.1422

We proceed with the stability limits of the discrete transport equations for the 4th RK wi
the CD Pad’6th order with periodic boundary conditions. Now, the semidiscrete equati
is

dp 1 - —
4t = ag(@cCe +0aD9), (41)

whereoq = vAt/h? is the CFL number for diffusion, and
(DP)iv1p=¢l1—¢, 1=0...,N—1

with ¢’ obtained with the CD Paddiscretization method.

In Table X1V are listed the stability limits of the diffusion CFL number for the 4th-orde
RK method with CD 6th-, 8th-, and 12th-order CD Radethods and for two values of
the convection CFL numbes, = 0.5 ando. = 1. Again, as expected, increasing the ordel
of the method decreases the maximum value of the diffusion CFL number, while for |
same method a smalleg improves the stability limit. Figure 13 shov® for some limit
combinations of. andogy. Note that simultaneously using the limit valuessgt= 1.3304
for pure convection witlyy = 0.2901 for pure diffusion in a transport equation yields ar

=2 i

FIG. 13. Stability region foro.=1.3304 o4 =0 (thick black); o. =1, 04 =0.2407 (thick dark gray);
0. = 0.5, o4 = 0.2901 (thick gray); and, =0, o4 = 0.2901 (horizontal thick light gray).
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unstable method. In other words, the stability analysis for the transport equations cann
undertaken separately.

We now proceed to the study of the effect of the boundary condition on stability. In [
14, 28] is introduced the notion of GKS stability and an analytical method to establish
GKS stability of discrete methods with boundary approximation taken into account. In
this technique is applied to some compact finite difference methods, together with se
boundary approximations. In [5] the authors concluded that in practical computations
those schemes for which the semidiscrete equation is Lyapunov stable are of any useft
for long-time integrations. Thus, we use the spectrum of the semidiscrete equations to
the effect of the boundary closure.

Let us start with the hyperbolic equation. First, we consider the effect of the order of
accuracy of the boundary closure on stability. The semidiscrete equation is formally the
as Eq. (37) witkC modified in order to take the boundary closure into account. We rem:c
that for the stability analysis it is sufficient to consider homogeneous boundary conditi
In fact, we can think of stability analysis as the study of the evolution of perturbations
the solution with a fixed boundary condition.

Figure 14 shows the spectrum that results from 4th-ordee Rait method closed at the
outlet boundary with the 3rd- and the 4th-order schemes presented in the previous se
The grids comprise 32, 64, and 128 control volumes. The spectra are very similar,
the 3rd-order approximation closer to the imaginary axis. This finding for the it
volume method is in clear contrast to the findings for theeHadte difference method (see
[4]). The latter is stable for the 3rd-order closure, but is unstable for the 4th. This is du
the fact that the finite difference approach requires a downwind extrapolation at the |
and, as is well known, a downwind extrapolation is unstable. On the other hand, the f
volume method does not need any approximation at the inlet and thus avoids the poten
unstable mode.

As mentioned earlier a 6th-order or higher Pawéthod requires some approximation a
points close to the boundaries. We consider the 6th-ordes Redtiod with the following

2 200
150
100 o
50 :

b 200
150
100 ]

+ ad
D ah un]
50 ¥t Las an"
N .
a At a0
..

KX

-12-10-8-6-4-2 0

FIG. 14. Spectrum of the semidiscrete 4th-order @awkthod in pure advection for (a) 3rd- and (b) 4th-orde
boundary conditions at outlem{) 32, () 64, and([1) 128 control volumes.
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FIG. 15. Spectrum of the semidiscrete 6th-order @atEthod in pure advection for (a) 5th- and (b) 6th-order
boundary conditions at outletm ) 32, (A) 64, and((J) 128 control volumes.

6th-order approximation close to the boundaries:

1. Atinlet
1 3 43~ 41— 5_  1-_
§¢0 +¢1+ 4_1¢3 = 9—6¢1/2 + 3—2¢3/2 + 3—2455/2 - 9—6¢7/2~

2. Atoutlet

197 - 37— 13— 11— 1 -
SPN-1+ PN = ﬁd’N—l/Z + Eﬁbes/z - Ed’NfS/Z + %¢N77/2 - %¢N79/2-

The Pa@ method for the poinN — 1 is computed analogously to that for the point 1 at
inlet.

Figure 15 shows the spectrum of the 6th-orderePaethod with the boundary closure
mentioned above. This figure corroborates the previous findings, namely, that éfafRed”
volume method is stable for a boundary closure of the same order of accuracy as the i
points.

Because the effect of the boundary is to create some damping in the high-freque
modes, the limit value computed with the von Neumann analysis is still valid, and bc
approximations are stable with this limit. To verify this assertion, in Fig. 16 is shown t
spectrum that results from the the explicit 4th-order RK and 4th-ordes it method,
which is closed at the outlet boundary with the 4th-order scheme. The grids comprise
and 128 control volumes fer. = 2,/2/3. This figure confirms the fact that the CFL limit
obtained with the von Neumann analysis can be used for the advection problem wit
prescribed inlet boundary condition.

-2 0 -2 0

FIG. 16. Spectrum of the discrete 4th RK, 4th-order Padéthod in pure advection fet =2,/2/3: (a) 32
and (b) 128 control volumes.
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FIG. 17. Spectrum of the semidiscrete 6th-order @awthod in pure advection for the 6th-order boundan
closure at outlet(m) 32, ( A) 64, and([0) 128 control volumes.

Finally, we study the effect of the boundary closure on the CCePaethods for a general
transport equation. We start with the critical limit of pure advection.

When both boundary conditions are of Dirichlet type the operét® skew-adjoint,
whence the eigenvalues are pure imaginary. Thus, we only need to consider the case
a combined Dirichlet and a von Neumann boundary condition. Figure 17 shows the re
ing spectrum for the CD 6th-order Radémidiscrete method with the 6th-order closur
The boundary condition corresponds to a Dirichlet boundary condition at inlet and a
Neumann at outlet.

Again, the finite volume method does not require any lowering of the order at the bot
ary. In this case the finite volume method represents a major gain in stability. Indee
[21] it is shown that the CD Padfinite difference method is unstable even for a bounda
closure of 4th order of accuracy.

An interesting feature of the general transport equation is the effect of the bounc
closure for the diffusion flux. Figure 18 shows the spectrum that results for the disc
4th-order RK method with the 6th-order CD Ramhethod for the transport equations witt
Dirichlet BC at inlet and von Neumann BC at outlet. The spectrum has been calcul
with the same values of CFL as in Fig. 13. For small CFL of diffusion the limit determin
by the von Neumann analysis is valid. However, as diffusion becomes more important
spectrum starts to display a reduction in the diffusion limit. For examplecferl the limit
for the 6th-order closure gy = 0.2125, which is smaller than the limit for periodic bound-
ary conditions ofoqg = 0.2407. Contrary to the pure convection case, where the spectr
converges towards the spectral function, in the transport equation the effect of the bour
closure on diffusion is permanent (see Fig.18b). A possible explanation for this diffe
behavior of the spectrum for pure advection and diffusion may lie in the fact that the fort
has a hyperbolic character while the latter has an elliptic character. Thus, the effect o
boundary is swept away as the grid is refined in the hyperbolic equation, while it is
in the elliptic one. Notwithstanding the reduction in the stability limitogf it should be
stressed that it is necessary neither to reduce the order of accuracy at the boundary to «
the stability of the method nor to enlarge the stencil close to the boundary, to accommc
stability.
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FIG. 18. Spectrum of the discrete 4th-order RK method with the 6th-order C[@ Redhod for the transport
equations with Dirichlet BC at inlet and von Neumann BC at outlet for (a) 64 and (b) 128 control volume
(0) 6.=1.3304 04 = 0; (0) 6. = 1, 04 = 0.2407;(m) 0, =0.5, o5y = 0.2901; and  A) o, =0, o4 = 0.2901.

Remark. Equation (39) showen passanthat for an odd number of control volumes
dimkenC) = 1, that is, only constant functions have a zero convective flux. In contrast, 1
an even number of control volumes dim k&r= 2. Thus, in addition to the constant mode,
we also have the so called “checkerboard” mode or the “odd—even” decoupling.

Using two first derivative operators to represent the Laplacian operator on a nonstagg
grid may lead to the checkerboard mode. A remedy for this, put forward in [30], is to u
an approximation for the second derivative. However, as the previous observation sh
an alternative solution may be the use of an odd number of control volumes.

Remark. The limits of stability determined above also works for time-periodic solution:
Indeed, it is enough to observe that a time-periodic solution is a fixed point of the operz
(RKy)', wherel e N is the discrete period, and that(RK)') = (o ((RKy))'.

Remark. For nonlinear problems the previous stability limits also hold true for th
stability of fixed points or periodic orbits. Indeed, consider a general conservation law

g  df(p)
ﬁ—i_ ax

0,

where f is some smooth function. Then, the linearized equation, for example, in the fix
point ¢ can be written as

[d&ﬁ + f'((90)i+1)3¢i+1 — F'((90)i)d¢

i =0.
dt ]i+l/2 h
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Hence, foro; < ocmax the result follows at once from the Lyapunov theorem. As a f
nal comment, we remark that in the nonlinear case, the Lyapunov theorem guarantec
convergence to the critical point only in a neighborhood of it, while in the linear case the
vergence is for any point. In other words, the stable manifold is the whole space in the li
case, but in general, it is not so for the nonlinear case.

Remark. The above analysis considered constant coefficients in a uniform grid. -
following argument suggests that for a sufficiently fine grid, the results above hold true
applied locally.

We start with the nonconstant case. The conservation law in intrinsic form is

9 3
3t + div(cg) = 0.

Letc* € C* N L* be a smooth limited function. Then, in a Cartesian grid it is

3 9C%H
¥+ ax

0

and in a general coordinate

09 199 _,
it /g 0

(42)

whereg is the determinant of the metric in the coordingteéSupposec* € C* does not
change sign. Then, in the coordingtgiven by
9 1
X ¢
Eq. (42) simplifies to

I 0
e =0

whereg = /9¢. The stability criterion for the previous equation is

At -
— [of .
he = c,max

Using h; =hy/c 4+ o(hy) we find, for a sufficiently small grid, the following stability
criterion in the “physical” grid:

Atlc]l < e max
X

The case wher =0 is trivial. Consider it is not zero for some points and consider

3-neighborhood of the complement of the supportdf For sufficiently smalb the max-

imum of the speed occurs outside We can apply the previous result for each connecte

component of the complementdf And since it is uniform with respect towe obtain the

result by passing to the limit as— 0.
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FIG. 19. Spectrum of the discrete 4th-order RK method with the 4th-ordee Faethod for pure advection
and periodic boundary conditions for varying local CFL: (left\X) = ocmaxSin(27X), X € [0, 1] and (right)
0¢(X) = 0¢max(€0S327 X) + cog307 X)), x € [0, 1].

To verify this remark we compute the spectrum of the 4th-ordeeRadthod with a
4th RK method for time evolution for a pure convection problem with periodic bounda
conditions and varying CFL numbers. Figure 19 shows the resulting spectra for two CFL
files:o¢(X) = oc.maxSIN(27 X), X € [0, 1], ando¢(X) = 0¢ max(COL(327X) + cog307 X)), X €
[0, 1]. The first is a slowly varying function, while the second is a highly oscillatory profil
with a “beating.” Figure 19 shows that the spectrum converges to®%aaad also that this
convergence depends on the resolution of the monochromatic components of the prof

In the case of general transport equations the results are valjdsfsufficiently small.
This is not so rare, and in fact, it is true for most convection-dominated problems. |
example, for a Reynolds number of the order of Add a grid with about 100 control
volumes we havey /o, ~ 1074,

The case of a nonuniform grid can be handled analogously by noting that, from Eq. (4
the nonuniform grid can be seen as a particular case of the nonconstant speed.

7. SUMMARY

A class of Pad finite volume methods for the evaluation of derivatives and interpolatic
have been presented and analyzed. From the analysis, the following conclusions ca
drawn:

1. The use of the sliding averages in the finite volume formulation requires a smal
stencil in multi-dimensional problems, as compared with point values. Moreover, in tirr
dependent problems the former appears explicit, while the latter requires interpolation

2. For pure convection, or pure diffusion problems, the standard (uncoupled) P:
method has the highest order of accuracy in the given stencil and requires less CPU
than the CD Paal’interpolation. For general transport equations, the latter presents
improved spectral resolution and no significant additional cost.
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3. Pad methods convey energy better than usual interpolation.

4. The spectral Padmethod shows spectral-like resolution and exponential conv
gence.

5. Using the notion of reflection ratio it is shown that the order of the boundary clost
if lower than or equal to the order of accuracy of the inner points, determines the unif
order of accuracy of the Padnhethod.

6. The limits of stability computed by the von Neumman procedure are valid for |
pure advection problem or for convection-dominated problems. Moreover, contrary to
finite difference method, the finite volume method requires neither the lowering of the ol
of accuracy at the boundary closure nor any change in the stencil of the point at the bour
to accommodate stability.
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